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Abstract

Implementing an ensemble mean forecast to aid in fuel planning for long-range

strategic airlift has the potential to improve upon the deterministic forecasts cur-

rently used. More accurate wind forecasts could aid in a significant reduction in

annual fuel costs for the DoD. This study focuses on the wind forecasts from the

Global Forecast System (GFS) deterministic model and the ensemble mean wind

forecasts from the Global Ensemble Forecast System (GEFS), Global Ensemble

Prediction System (GEPS), and Mesoscale Ensemble Prediction System (MEPS)

over a 60-day period from 19 Sep through 17 Nov 2013. The fuel burn and total

spread were computed for five great circle flight routes and five aircraft using each

model’s wind data. The deterministic fuel burn error was then compared to the en-

semble mean fuel burn error. For each of the routes of flight investigated at cruise

levels 500mb (FL180) and 250mb (FL340), the amount of reserve fuel required to

account for the uncertainty in the wind forecasts was typically lower for the ensem-

ble mean forecasts during forecast hours 12 to 48.
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COMPARISON OF ENSEMBLE MEAN AND DETERMINISTIC FORECASTS

FOR LONG-RANGE AIRLIFT FUEL PLANNING

1. Introduction

Accurate wind forecasts are essential to fuel planning for Air Mobility Com-

mand (AMC). Poor wind forecasts can result in over- or under-estimating required

fuel loads, which translates into wasted money and man hours for the Air Force.

Currently, wind-optimized flight planning for AMC is performed using Advanced

Computer Flight Planning (ACFP) system. ACFP incorporates wind and temper-

ature data from numerical weather prediction (NWP) models. To date, only deter-

ministic forecast data has been used.

Until recently, the convention for meteorologists has been to use NWP models

to produce a deterministic forecast. A deterministic forecast is one in which a single

model generates an estimate of the current atmospheric state at a particular time

(initial conditions) and then integrates the governing equations (conservation of

mass, conservation of momentum, conservation of energy, a conservation equation

for water mass, and the equation of state) over time in order to produce a single so-

lution that represents the future state of the atmosphere. Despite improved physics

packages, more computing power, finer resolution, and improved numerical meth-

ods, there is still a considerable amount of uncertainty associated with determinis-

tic forecasts (Leutbecher and Palmer 2008). Because of this uncertainty, the use of

NWP deterministic forecasts in optimized flight planning systems may not be the

most effective approach.

An ensemble of models enables users to quantify the amount of uncertainty in
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NWP forecasts and visualize it through various graphical products. Each member

of an ensemble prediction system (EPS) is created by either perturbing the initial

conditions or employing varying physics parameterizations within the model itself.

This research is focused on determining if the mean wind forecast from an ensemble

of models would be more advantageous than a single model deterministic forecast

when determining flight routes .

Ensemble forecast uncertainty can be presented in a number of ways. Some of

these include: (1) spaghetti diagrams, which give a human forecaster an idea of

the probability distribution for the forecast, (2) probabilities of exceeding specific

thresholds, such as wind gusts greater than 35 knots, and (3) forecast mean and

spread. The mean is simply the average value of all the ensemble members’ fore-

casts of a parameter, while the spread quantifies the uncertainty via the standard

deviation among the ensemble members’ forecasts. Several authors have shown that

the ensemble mean forecast performs better, on average, than a deterministic fore-

cast (Anderson 1996; Eckel et al. 2008; Toth and Kalnay 1993; Tracton and Kalnay

1993). Keith and Leyton (2007) showed that by switching from the traditional ter-

minal aerodrome forecast, which is a deterministic forecast, to a probabilistic fore-

cast for adverse landing weather conditions, commercial airlines could see signif-

icant savings in fuel expenses. Additionally, several other studies have shown the

value of using ensemble-based probabilistic decision inputs over deterministic or cli-

matological information (Katz and Murphy 1997; Richardson 2000; Palmer 2002;

Zhu et al. 2002).

The main objectives of this research are to: (1) determine if an ensemble mean

wind forecast is more advantageous than a deterministic forecast for strategic air-

lift fuel planning and (2) determine if a correlation exists between the ensemble

spread and the error in calculated fuel burns. The remainder of this document is

2



organized into four chapters. Chapter two provides background information and be-

gins with a brief history of numerical weather prediction. Next it defines what an

ensemble is and the processes involved in creating an ensemble. Chapter three dis-

cusses the methods used to obtain and analyze the data used in this study. Chapter

four presents the results. Finally, chapter five summarizes the study and provides

recommendations for future work.
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2. Background

2.1 Ensemble Prediction System (EPS)

2.1.1 History of NWP.

NWP has a rich history that can be traced back to 1949, when Jule Charney

and his group produced the first successful 24-hr forecast (Lewis 2005). During this

time, NWP principles were based on determinism, which simply stated that the fu-

ture state of a system is completely determined by the initial state of the system

(Lewis 2005). It was the success of Charney’s group that sparked the meteorolog-

ical community across the world to begin working on improving the NWP frame-

work in hopes of being able to produce extended-range operational weather fore-

casts.

During the mid-1950s and throughout the 1960s, primitive equation (PE) mod-

els took the place of quasi-geotrophic models as the basis for operational short-

range NWP and were further explored by Charney (1955) and Richardson (1965).

The quasi-geostrophic approximation has the effect of filtering out sound and grav-

ity waves (Kalnay 2003). It was this approximation which made the first successful

24-hour forecast by Charney possible. Although the use of PEs had distinct advan-

tages over the quasi-geostrophic models, the computational requirements needed

to account for the finer time steps and increased number of variables made it im-

possible to implement operationally until 1965 (Lewis 2005). Leith was the first to

develop a PE-based global circulation model (GCM) in the summer of 1960. The

model extended from the equator to 60◦ N and incorporated a 5◦ latitude x 5◦ lon-

gitude horizontal grid over five vertical levels. It was also the first numerical model

to include moisture, clouds, and rain (Leith et al. 1965). During this time period,

Lorenz made a monumental contribution to NWP development. Beginning in 1956,

4



he set out to disprove the hypothesis that a linear regression could be used to ade-

quately forecast under the constraint of non-linear dynamics. He ultimately discov-

ered a non-periodic evolution of the atmosphere commonly known today as chaos

theory, which is fully described in his scientific biography The Essence of Chaos

(Lorenz 1993). As a result of Lorenz’s findings, by 1964, meteorologists began shift-

ing their focus toward predictability and the need for statistical consideration in

order to achieve useful long-range forecasts (Lewis 2005). It was also during this

time that Lorenz shared his vision of ensemble forecasting with the meteorological

community:

The proposed procedure chooses a finite ensemble of initial states, rather
than a single observed initial sate. Each state within the ensemble re-
sembles the observed state closely enough so that the differences might
be ascribed to errors or inadequacies in observation. A system of dy-
namic equations previously deemed to be suitable for forecasting is then
applied to each member of the ensemble, leading to an ensemble of states
at any future time. From an ensemble of future states, the probabil-
ity of occurrence of any event, or such statistics as the ensemble mean
and ensemble standard deviation of any quantity may be evaluated.
Between the near future, when all states within an ensemble will look
about alike, and the very distant future when the two states within an
ensemble will show no more resemblance than two atmospheric states
chosen at random, it is hoped that there will be an extended range when
most of the states in an ensemble while not constituting good pin-point
forecasts, will possess certain important features in common. It is for
this extended range that the procedure may prove useful. (Lorenz 1965).

The next big contribution to probabilistic NWP and forecast uncertainty came

from Epstein (1969) and his work on a stochastic-dynamic (SD) approach to NWP.

SD prediction was conducted using Monte Carlo methods, which assume a known

randomly sampled probability distribution function (PDF). For much of the time

from the 1960s to the mid-1980s meteorologists were waiting for the operational

implementation of SD forecasting, which relied on the availability of affordable
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parallel-processing computers. Further study occurred on the limitations of pre-

dictability, computing issues related to the Monte Carlo and SD approximations,

the perturbation methodology, and finally, flow-dependent uncertainty (Lewis 2005).

It was during this time period that Leith proposed using multiple NWP runs to

produce a limited sample of future atmospheric states. Leith (1974) was able to

show improvements in forecasts with lead times out to 10 days by using the mean

values from approximately 10 different NWP runs.

During the early 1990s, the European Center for Medium-Range Weather Fore-

casts (ECMWF), National Centers for Environmental Prediction (NCEP), and the

Meteorological Service of Canada (MSC) first put operational stochastic-dynamic

prediction, (i.e. ensemble forecasts) into operational use. An initial comparison of

these three EPSs can be found in Buizza et al. (2005), however, for a more compre-

hensive list of updates and the most up to date information regarding each EPS,

refer to their respective websites (www.ecmwf.int, www.ncep.noaa.gov, and http:

//weatheroffice.ec.gc.ca/ensemble/index_e.html).

Since the operational implementation of EPSs, advances in computing power

have expanded the number of ensemble members and increased the vertical and

horizontal resolution of the members. Improvements to model physics and data as-

similation schemes have also reduced initial state errors.

2.1.2 Definition of EPS.

Eckel et al. (2008) explain that the purpose of an ensemble forecast is to sim-

ulate error growth associated with errors in the analysis of the initial state, and

the deficiencies in the NWP model to produce a sample of likely forecast states.

EPSs accomplish this by producing multiple forecasts through a number of differ-

ent methods. One method used to create multiple forecasts is to perturb the sur-

6



face or lateral boundary conditions (note that lateral boundary conditions can only

be perturbed in regional models). Another method involves perturbing the initial

conditions. A final method involves perturbing the model itself. The model can be

perturbed by changing the dynamical formulation by, for example, using different

vertical coordinate types. Another way to perturb the model is to change the nu-

merical methods it uses. An example of this would be to use grid-point differencing

versus spectral differencing. A third method to perturb the model is to change one

or more of the physical parameterizations, which are used to represent atmospheric

phenomenon that cannot be explicitly resolved by the model. An example of such

a parameterization is the cumulus convective scheme. A final way to perturb the

model is to simply change the horizontal and/or vertical resolution (UCAR 2004).

The three different EPSs used in this study include NCEP’s Global Ensemble

Forecast System (GEFS), and the Air Force Weather Agency’s (AFWA) Global

Ensemble Prediction System (GEPS) and Mesoscale Ensemble Prediction System

(MEPS). GEFS is a single-model, global ensemble system comprised of 21 members

run at 00, 06, 12, and 18 UTC. In February 2012, NCEP completed an upgrade to

GEFS enabling it to run at a horizontal resolution of T254 (approximately 55km)

for hours 0 through 192 and T190 (approximately 73km) for hours 198 through 384.

The GEFS vertical resolution is L42 for all 16 days. L42 is the shorthand notation

used to refer to the number of vertical levels used by the models. The vertical levels

in these models are unevenly spaced throughout the column with layers concen-

trated in the planetary boundary layer and near the tropopause. GEFS initial con-

dition (IC) perturbations are produced by the method of Ensemble Transform with

Rescaling (ETR) (Wei et al. 2008) and the Stochastic Total Tendency Perturbation

scheme (Hou et al. 2011) used to account for model uncertainties.

GEPS is a multi-model ensemble comprised of 21 members each from NCEP’s
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Global Forecast System (GFS) and Canadian Meteorological Center’s (CMC) Global

Environmental Multiscale (GEM), and 20 members from the Fleet Numerical Mete-

orological and Oceanography Center’s (FNMOC) Navy Operational Global Atmo-

spheric Prediction System (NOGAPS), for a total of 62 ensemble members. GEPS

is run twice daily on the 00 UTC/12 UTC cycles. GEPS output has one-degree

(approximately 110 km) horizontal resolution, and is available at 6-hour time steps

out to 240 hours. AFWA creates GEPS forecast products using an ensemble post-

processor (Kuchera 2012).

Currently, the CMC GEM grid point model has approximately 66 km horizon-

tal resolution with 74 vertical levels. IC perturbations are created using the ensem-

ble transform Kalman filter (Bishop et al. 2001) along with stochastic physics and

perturbed physical parameterizations. The CMC GEM is run twice daily at 00 and

12 UTC out to 384 hours. The FNMOC runs the NOGAPS spectral model in an

ensemble forecast system (NOGAPS GEFS). The current horizontal resolution is

T159 (approximately 80 km) with a vertical resolution of L42. NOGAPS uses a

nine-banded ensemble transform method (McLay and Bishop 2010) to produce its

initial condition perturbations and is run twice daily at 00 and 12 UTC out to 384

hours.

AFWA’s baseline MEPS is a single-model ensemble system consisting of a 20

km hemispheric domain and a tropical “stripe” around most of the equator. MEPS

uses global deterministic models for initial and lateral boundary conditions and is

comprised of 10 members created using the Weather Research Forecasting (WRF)

framework. MEPS is run twice daily at 06 and 18 UTC out to 144 hours (Kuchera

2012).

It is important to note that model upgrades occur regularly. For the most up-

to-date specifications for GEPS and MEPS reference: https://weather.af.mil/
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confluence/display/AFPUBLIC/Operational+AFWA+Ensemble+Information.

For the most up to date information regarding GEFS, CMC GEM, and NOGAPS

model specifications refer to http://www.emc.ncep.noaa.gov/GEFS/clog.php,

http://weather.gc.ca/ensemble/verifs/model_e.html, and, https://www.

fnmoc.navy.mil. The most comprehensive and up-to-date summary of EPS char-

acteristics is at http://www.meted.ucar.edu/nwp/pcu2/ens_matrix/nefs_p1.

htm.

2.1.2.1 EPS with Perturbed ICs.

Any difference between the model-estimated and the true state of the atmo-

sphere at the initialization of the NWP model is analysis error. Allen (2009) states

that analysis error may result from errors in the observations due to instrument

limitations or the inability to observe at all spatial and temporal scales. Leutbecher

and Palmer (2008) separate perturbation techniques into two groups: 1) techniques

that aim to obtain a sample of initial states from the PDF and 2) techniques that

selectively sample initial uncertainty only in those regions that are dynamically the

most important for determining the ensemble dispersion.

A technique from the first group is employed by Canada’s MSC in their GEM

model. The model’s initial conditions are created using an ensemble Kalman filter

in which assimilated observations are perturbed by pseudo-random numbers within

the known uncertainty of the observations. The added noise from this method rep-

resents observational error and can be viewed as a feasible approximation of the

extended Kalman filter (Leutbecher and Palmer 2008).

An example of a technique from the second group is the bred-vector (BV),

which is used at NCEP. A BV is created by adding a random perturbation to the

initial state. Both the perturbed and unperturbed states are evolved using the
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NWP model over some forecast period (usually on the order of 6 to 24 hours). The

vector difference between the original and perturbed states is found and rescaled to

match the typical analyses error. This new perturbation is then added to a new

state estimate and the procedure is repeated. Finally, after several growth and

rescaling steps the BV is obtained (Leutbecher and Palmer 2008; Toth and Kalnay

1997). FNMOC’s Ensemble Transform (ET) method is another example of a tech-

nique from the second group. Wei et al. (2008) found that “the properties of ET

perturbations show that the method resembles breeding, in that they both dynami-

cally cycle the fastest growing non-linear perturbations.”

2.1.2.2 EPS with Model Perturbations.

Model error is defined as any difference between the model forecast and the

true atmospheric state resulting from the design of the NWP model, including lim-

its in model resolution, mathematical formulation, lateral and surface boundary

conditions, and physics (Allen 2009). Leutbecher and Palmer (2008) describe three

general methods for representing model error: 1) multi-model ensemble, 2) the per-

turbed parameter ensemble, and 3) stochastic-dynamic parameterization.

The success of the multi-model ensemble lies in the fact that different models

from different institutes have been developed quasi-independently. Therefore, there

will be a variety of convective schemes, orographic drag schemes, and numerical

approaches within a multi-model ensemble (Leutbecher and Palmer 2008). Mylne

et al. (2002) showed that, in addition to choosing NWP systems with similar overall

skill, it is also important that the NWP systems are as independent of each other

as possible. This maximizes the chance that the strengths of one model will over-

come the weaknesses of another model, thus resulting in a more skillful ensemble.

The size of a multi-model EPS is limited by the number of models currently avail-
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able. In order to overcome this limitation, the perturbed parameter approach was

developed (Murphy et al. 2004). The majority of examples involving perturbed pa-

rameter ensembles are associated with climate change research.

Unlike the perturbed parameter ensemble, the stochastic-dynamic parameter-

ization approach does not assume that the correct tendency can be given by a de-

terministic bulk formula. “Indeed, in the stochastic-dynamic approach it is assumed

that the assumption of an ensemble of sub-grid processes at any time-step and for

any grid box, is a flawed assumption” (Leutbecher and Palmer 2008). Buizza et al.

(1999) showed that stochastic physics led to an increase in the spread of the ensem-

ble, improving its performance. An increase in the spread, up to a certain point,

allows the probability distribution function (PDF), which is inferred from the dis-

tribution of ensemble members’ forecasts, to more accurately represent the future

state of the atmosphere. As the ensemble spread approaches zero, the ensemble es-

sentially becomes a deterministic forecast.

2.1.2.3 Quantifying EPS Uncertainty.

There are a number of ways to quantify the uncertainty associated with a fore-

cast. Three commonly used methods are the ensemble mean, ensemble spread, and

probability of exceedance. The most relevant to this study are the ensemble mean

and spread. The ensemble mean is simply the forecast obtained by averaging all

the ensemble members’ forecasts. The spread is the standard deviation of the en-

semble members’ forecasts. It represents how much uncertainty exists among the

ensemble members. Typically, forecasters employ the ensemble mean and spread

with the assumption that the PDF is a normal distribution, which is not necessar-

ily the case (UCAR 2004). Figure 1 depicts the mean (wind barbs) and spread

(colored contours) associated with a 250mb wind forecast. The highest spread val-
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Figure 1. GEFS mean and spread for 250mb winds from the 22 Apr 2013 00 UTC
model run, valid 23 Apr 2013 at 00 UTC. Winds are represented by barbs and are
in units of ms−1. Each short barb represents 5 ms−1, each long barb 10 ms−1, and
pennants 50 ms−1. Spread is represented by the color filled contours with units of
ms−1. Image obtained from http://mag.ncep.noaa.gov.

ues are indicated by the orange shading and are located just south of Alaska, over

Northeastern Maine, and east of Maine over the Atlantic Ocean. The white shading

located over central Canada and extending northeast over Greenland indicates the

lowest spread values.

Figure 2 is an example of a probability of exceedance graphic. The probability

of exceedance is based on the fraction of ensemble members that exceed a chosen

threshold. The highest probabilities are depicted in red. The locations with the

highest probabilities include a large area over the Gulf of Mexico, as well as a small
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Figure 2. Probability (in percent) of surface winds exceeding 25 kt based on AFWA’s
Global Ensemble Prediction System (GEPS) valid 12 UTC on 29 Jan 2014. Image
obtained from https://weather.af.mil.

area in the Atlantic Ocean east of North Carolina. Both of these areas have proba-

bilities ranging from 50-70 percent.

2.2 Advanced Computer Flight Planning System (ACFP)

AMC uses the ACFP system to determine optimal routes of flight based on

aircraft performance, winds and temperatures aloft, as well as air traffic control

and diplomatic constraints. Additionally, the ACFP system uses detailed perfor-

mance data for climb, cruise, and descent at all possible aircraft weights. AFWA

provides ACFP with GFS model wind, temperature, and geopotential heights for

15 separate atmospheric levels in gridded binary (GRIB) format files every 6 hours.
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The GRIB data uses 1◦ grid spacing and contains output at forecast hours 0-48 at

6-hour intervals and forecast hours 48-96 at 12-hour intervals. In addition to the

NWP model data, ACFP also receives climate data from AFWA. Similar to the

NWP data, the climate files contain temperature, geopotential heights, and winds

for the same 15 atmospheric levels. Climatological wind, temperature, and geopo-

tential height data would be used when the flight plan being generated extends be-

yond the available model forecast period.
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3. Methodology

In this chapter, the methods used to obtain and analyze the data used in this

study are explained. The chapter outlines the simplified version of ACFP used

to compute forecasted fuel burns. The implementation of the simplifications used

for this study allowed it to focus solely on how wind forecast variability affects the

forecasted fuel burn for different aircraft and different routes of flight.

3.1 Flight Routes and Aircraft Specifications

In this study, fuel loads planned using GFS deterministic model forecast winds

aloft were compared to fuel loads planned using GEFS, GEPS, and MEPS ensem-

ble mean forecast winds for five different pre-determined flight routes and five dif-

ferent aircraft types. The aircraft, routes, and cruise altitudes selected were based

on common long-range flights planned by AMC. A summary of the aircraft types,

true air speeds (TAS), cruise levels, and fuel burn rates used can be found in Ta-

ble 1. The average fuel burn error was calculated and analyzed to determine if any

model biases were present. The fuel burn root mean square error (RMSE) was also

calculated to compare the accuracy of the GFS deterministic model and the three

ensembles. Additionally, the forecasted ensemble wind spread was calculated and

summed along each flight route to compare the total spread and the fuel burn er-

ror.

Five different flight routes representative of routes flown by AMC aircraft were

used for the fuel calculations in this study. Table 2 contains the departure and

destination latitudes and longitudes and the total great circle distance in nautical

miles for each route. It is important to point out that the great circle routes used

in this study were a simplification of the more complicated routes of flight actu-
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ally utilized by AMC. However, the simplified routes should yield similar outcomes

in the fuel burn error to the more complicated routes since the deviations in the

more complicated routes account for a small percentage of the total distance, and

thus total flight time. The chosen flight routes covered a range of different mete-

orological phenomena, creating the opportunity for variability between the GFS

deterministic and the three ensemble mean forecasts. For example, the flight lev-

els at which the C-17, C-5, KC-10, and KC-135 cruise ensured that the aircraft

passed through the main core of the the polar front jet stream at least once and

possibly twice, during the Ramstein AB, Germany to Dover AFB, DE flight. The

same can be said for the Joint Base Lewis-McChord, WA to Yokota AB, Japan

route. The Travis AFB, CA to Manas AB, Kyrgystan fight route encountered the

jet stream twice, once as the aircraft traveled north toward the pole and again af-

ter it crossed the pole and traveled south over western Asia. The Charleston AFB,

SC to Travis AFB, CA route crossed the Rocky Mountains, another source of vari-

ability in the upper-level wind forecasts. Finally, the Travis AFB, CA to Joint Base

Pearl Harbor-Hickam, HI route crossed from prevailing mid-latitude westerly winds

into tropical easterlies, and in the process, encountered the sub-tropical jet stream.

Table 1. Aircraft Specifications

Aircraft True Air Speed (kt) Cruise Level (mb) Cruise Level (ft) Fuel Burn Rate (lb/hr)

C-130 300 500 FL180 5000
C-17 443 250-400 FL340-240 18000
C-5 450 250-400 FL340-240 25000

KC-10 470 250-400 FL340-240 18000
KC-135 380 250-400 FL340-240 10000

Figure 3 depicts a mid-latitude Pacific great circle flight path originating from

Joint Base Lewis-McChord, WA (KTCM; 47◦08’16”N 122◦28’35”W) with a des-

tination of Yokota AB, Japan (RJTY; 35◦44’55”N 139◦20’55”E). Figure 4 shows

the great circle flight path for a mid-latitude Atlantic flight from Ramstein, AB,
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Figure 3. Projected great circle flight path for a mid-latitude Pacific flight departing
from McChord AFB, WA and arriving at Yakota AB, Japan. Figure created using
http://www.gcmap.com.

	  
Figure 4. Projected great circle flight path for a mid-latitude Atlantic flight depart-
ing from Ramstein AB, Germany and arriving at Dover AFB,DE. Figure created
using http://www.gcmap.com.
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Table 2. Flight Routes

Flight Route Depart lat/lon (degrees) Dest lat/lon (degrees) Great Circle Dist (nm)

KTCM-RJTY 47.138N/122.476W 35.749N/139.349E 4179
ETAR-KDOV 49.437N/7.600E 39.129N/75.466W 3444
KSUU-PHIK 38.265N/121.924W 21.319N/157.922W 2117
KCHS-KSUU 32.899N/80.041W 38.265N/121.924W 2055
KSUU-UCFM 38.265N/121.924W 43.061N/74.478E 5850

Germany (ETAR; 49◦26’13”N 7◦36’01”E) to Dover AFB, DE (KDOV; 39◦07’46”N

75◦27’57”W). Figure 5 shows the flight path for a low-latitude Pacific route from

	  
Figure 5. Projected great circle flight path for a low-latitude Pacific flight depart-
ing from Travis AFB, CA and arriving at Hickam AFB, HI. Figure created using
http://www.gcmap.com.

Travis AFB, CA (KSUU; 38◦15’52”N 121◦55’27”W) to Joint Base Pearl Harbor-

Hickam, HI (PHIK; 21◦19’07”N 157◦55’2”W). Figure 6 depicts a lower mid-latitude

CONUS flight path from Charleston AFB, SC (KCHS; 32◦53’55”N 80◦02’26”W) to

Travis AFB, CA (KSUU; 38◦15’52”N 121◦55’27”W). Figure 7 shows an over the

pole flight originating from Travis AFB, CA (KSUU; 38◦15’52”N 121◦55’27”W) and

arriving at Manas AB, Kyrgyzstan (UCFM; 43◦03’41”N 74◦28’39”E). For the sake

of consistency in relating positive/negative fuel burn errors to under-/over-forcasted

westerly winds, the fuel burn was calculated for flights traveling from east to west
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!
Figure 6. Projected great circle flight path for a lower mid-latitude CONUS flight de-
parting from Charleston AFB, SC and arriving at Travis AFB, CA . Figure created
using http://www.gcmap.com.

along each route. Therefore, in this study, negative fuel burn errors are always as-

sociated with the headwind being under-forecast while positive fuel burn errors are

associated with the headwind being over-forecast.

3.2 Required data

The GFS deterministic model and the GEFS, GEPS, and MEPS ensembles

were used in this study. The u (east-west) and v (north-south) wind components

at pressure levels 500mb, 400mb, 300mb, and 250mb were obtained from the GFS

model. The u and v components of the ensemble mean wind and spread at 500mb

and 250mb were obtained from the GEFS and GEPS while the u and v components

of the ensemble mean wind and spread at pressure levels 500mb, 400mb, 300mb,

and 250mb were obtained from the MEPS. Note that the 300mb and 400mb lev-

els were not used for the GEFS and GEPS because those levels are not part of the

standard output from those ensembles. Both the GFS and GEFS are run at 6-hour

intervals at 00, 06, 12, and 18 UTC daily. GEPS and MEPS are run at 12-hour in-
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Figure 7. Projected great circle flight path for an over the pole flight departing
from Travis AFB, CA and arriving at Manas AB, Kyrgyzstan. Figure created using
http://www.gcmap.com.

tervals. GEPS runs occur at 00 and 12 UTC while the MEPS runs occur at 06 and

18 UTC. Both the GEPS and MEPS data sets were obtained from AFWA. For each

model run the forecast fuel burn was computed for each route, each aircraft type,

and each cruise flight level, for each forecast hour from 0 through 120 at 6-hour in-

tervals.

3.3 Calculating fuel burn

In addition to wind, air temperature, aircraft weight, and altitude all affect the

amount of fuel an aircraft burns throughout the flight. In order to eliminate these

other sources of variability in fuel burn calculations, this study: 1) employed a pre-
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set fuel burn rate for each type of aircraft based on a representative aircraft weight

and altitude for each route; 2) neglected fuel burn during take-off, climb, descent

and landing; 3) neglected temperature variation; 4) employed a pre-determined

TAS for each aircraft type; and 5) assumed a constant aircraft weight throughout

the flight. The fuel burn rate, TAS, and cruise altitudes for each of the five aircraft

were provided by AMC.

An iterative algorithm was used to calculate the total fuel burn along each of

the great circle routes specified in Table 2. As a hypothetical aircraft progressed

along the route its ground speed, heading and position was re-calculated each minute

using the wind data from the nearest model grid point. The nearest grid point was

used, rather than a weighted average of nearest neighbors, in order to produce man-

ageable run times. This re-calculation took place every 1 minute. The 1-minute

time step was chosen in order to capitalize on the full resolution of the model by

ensuring that the aircraft did not travel past the next grid point before an updated

calculation of the ground speed, heading, and position took place. A 1-minute time

step used with the TAS of the fastest aircraft, the KC-10 (470 kt or 242 ms−1),

equates to the aircraft traveling approximately 8 nm min−1 or 12.5 km min−1. This

distance is less than the 20 km grid spacing of the MEPS, the highest resolution

ensemble. The 1-minute updates continue until the aircraft reaches its destination.

The total time of flight was then used to calculate the forecasted fuel burn using

the constant fuel burn rate for each aircraft.

3.4 Model comparison

Once the forecasted fuel burn was calculated using the deterministic forecast

and ensemble mean at each forecast hour, the fuel burn error was calculated using

the +00 hour forecast (i.e. the analysis) for a particular date/time as the ground
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truth for verification of all previous forecasts valid at that date/time. For example,

the 19 September 18 UTC +00 hr forecast was used to verify the 19 September 12

UTC +06 hour forecast, the 19 September 06 UTC +12 hour forecast, and the 19

September 00 UTC +18 hour forecast. This method of verification was chosen be-

cause it is the common practice among NWP researchers (Joint Working Group on

Forecast Verification Research 2012). The fuel burn error was calculated by sub-

tracting the actual fuel burn (ground truth) from the forecasted fuel burn. There-

fore, a negative fuel burn error indicates not enough fuel planned for the flight,

while a positive fuel burn error indicates excess fuel planned. Once all flights were

analyzed, the average fuel burn error and RMSE for each forecast hour was calcu-

lated using Equations (1) and (2) respectively:

FBerror =
1

N

N∑
i=1

(FBFcst − FBActual)i (1)

FBRMSE =

√√√√ 1

N

N∑
i=1

(FBFcst − FBActual)2i (2)

where N is the sample size, FBActual is the ground truth fuel burn, and FBFcst is

the forecasted fuel burn.

3.5 Ensemble Spread vs. Fuel Burn Error Correlation

In order to answer the second question, whether or not a correlation exists be-

tween the ensemble forecast uncertainty and error in the planned fuel burn, the to-

tal ensemble wind forecast spread was calculated using a similar process to that

used to calculate the fuel burn. Instead of using the mean wind value at the nearest

grid point, the ensemble spread was used. The u and v components of the ensemble

spread were used to calculate a “combined wind spread” at each model grid point
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using Equation (3).

spreadc =
√

spread2u + spread2v (3)

The combined wind spread was then summed over the total distance of the flight

route to yield an additive wind spread. The additive wind spread for forecast hours

06 through 120 for GEFS and 12 through 120 for GEPS and MEPS was then com-

pared to the absolute value of the fuel burn error for the same forecast hours to

determine correlation using Equation (4):

rxy =
1

1 −N

∑(
x− x̄

sx

)(
y − ȳ

sy

)
(4)

In Equation (4), x is the fuel burn error, x̄ is the average fuel burn error, y is the

additive wind spread, ȳ is the average additive wind spread, sx is the standard de-

viation of the fuel burn error, and sy is the standard deviation of the additive wind

spread. N remains the sample size.
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4. Results and Analysis

This chapter presents the results obtained during this study. The first section

compares the deterministic and ensemble mean wind forecasts through analysis of

the average fuel burn error and RMSE for each aircraft and route of flight. The sec-

ond section presents results to determine correlation between the ensemble spread

and the fuel burn error.

This study looked at 65 different flight route and aircraft combinations for one

deterministic model and three ensembles. The date range for all four prediction sys-

tems is 19 September through 17 November 2013. Average fuel burn error results

are presented for only FL180 (500mb) and FL340 (250mb) because those are the

only levels at which all three EPSs produce output and because the results at both

FL240 (400mb) and FL300 (300mb) were similar. All four flight levels are discussed

in a sub-section on the RMSE results. The EPSs typically out-performed the GFS

deterministic forecast for the early forecast hours (f12 to f48) at FL180 and FL340,

however, results were not as favorable at FL240 and FL300 when the only ensemble

available for comparison was the MEPS.

4.1 GFS Deterministic vs. Ensemble Mean Forecasts

4.1.1 Average Fuel Burn Error.

The first goal of this study was to determine if ensemble mean wind forecasts

are superior to deterministic wind forecasts when planning fuel burn loads for long-

range airlift flights. The first result analyzed was the average fuel burn error, which

shows forecast performance trends from hours 06 to 120 and provides insight into

whether the deterministic model and/or ensembles have a bias in upper level wind

forecasts.
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With the exception of the ETAR-KDOV flight route, each different flight route

and aircraft combination shows a similar trend in which the average fuel burn error

becomes increasingly negative as the forecast hour increases. This trend indicates

a slight bias in both the GFS deterministic model and all three ensembles. Given

that all five routes of flight travel east to west, this bias indicates that each of the

four prediction systems has a tendency to under-forecast the westerly winds aloft

(i.e. headwinds).

Two examples are presented here. The first shows the highest range of vari-

ability for the GFS deterministic model and the GEFS, GEPS, and MEPS ensem-

bles. The large range between positive and negative across all forecast times was

isolated to the ETAR-KDOV route. The second case shows the average fuel burn

error being negative at all forecast hours for the GFS deterministic and the GEFS,

GEPS, and MEPS ensembles. This case more closely represents the remaining air-

craft/flight route combinations used in this study as they all showed the majority of

the forecast hours having negative average fuel burn errors.

Figure 8 shows the average fuel burn error for a C-130 departing from Ramstein

AB, Germany (ETAR) and landing at Dover AFB, DE (KDOV). The GFS deter-

ministic model is represented by a black square, GEFS a red cross, GEPS a blue

asterisk, and MEPS a magenta diamond. The GFS deterministic model, GEFS,

and GEPS ensembles all begin with an average fuel burn error near zero at forecast

hour 12 (f12). It is important to note that an average error of zero does not mean

the model was perfect; it merely means that roughly equal numbers of positive and

negative fuel burn errors averaged out to near zero. Both the GFS deterministic

and GEFS average fuel burn errors remain near zero until f42, when the error in-

creases to 80 and 58 pounds respectively. From this point the GFS deterministic

average fuel burn error increases at a faster rate than the GEFS. The error plateaus
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near 200 pounds at f60 and remains there until f90. From f96 until the end of the

period the GFS average fuel burn error increases to a maximum of 385 pounds.

The GEFS average fuel burn error has a maximum of 100 pounds at f60 but de-

creases to near zero by f84. The final 30 hours of the forecast period the GEFS av-

erage fuel burn errors are negative. The GEPS average fuel burn errors are negative

for all forecast hours and range from -15 pounds to -96 pounds. The MEPS aver-

age fuel burn errors also remain negative for all forecast hours, however the range

of errors is much larger with a minimum error of -27 pounds at f24 and a maximum

error of -490 pounds at f120.
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Figure 8. Average fuel burn error in pounds as a function of model forecast hour for
a C-130 at cruise level 500mb (FL180) and flight route ETAR-KDOV. The timeframe
of the data is 19 Sep – 17 Nov 2013. This case shows the most variability across all
forecast hours. Average fuel burn error is the actual fuel burn subtracted from the
forecasted fuel burn, thus negative values mean the planned fuel was under-estimated
based on the forecasted winds along the flight route and positive values indicate the
planned fuel was over-estimated.
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This particular route and aircraft combination is unique in that is shows the

GFS model with all positive average fuel burn errors, which indicates the model

is over-forecasting the head wind, while the MEPS and GEPS both have negative

average fuel burn errors for all forecast times. The GEFS shows a combination

of both positive and negative errors with a slight bias toward over-forecasting the

headwind.

These biases were further investigated to estimate their magnitude. This was

done by using the true air speed and fuel burn rates from Table 1 and the flight

route distances from Table 2. The actual wind bias values for the GFS, GEFS,

GEPS, and MEPS at f36 are 0.14 ms−1 , 0.05 ms−1 , 0.14 ms−1 , and 0.5 ms−1 re-

spectively while the bias values for the GFS and MEPS at f120 increase to 1.1 ms−1

and 1.4 ms−1 respectively. The GEFS and GEPS bias values remain very similar to

their values at f36 throughout the range of forecast hours. These wind bias mag-

nitudes are small in comparison with the uncertainty in wind observations them-

selves, which is between 1 ms−1 and 2 ms−1.

The C-130 ETAR-KDOV exhibits a much larger range than the KSUU-PHIK

and KCHS-KSUU routes (results not shown) between the GFS and the GEFS,

GEPS, and MEPS for forecast hours 48 and beyond (particularly the GFS and

MEPS). This may be attributed to individual performance differences between the

GFS deterministic model and the MEPS at mid-latitudes versus tropics.

The average fuel burn error results for the GFS deterministic model, GEFS,

GEPS, and MEPS for a KC-135 departing from Joint Base Lewis-McChord, WA

(KTCM) and landing at Yokota AB, Japan (RJTY) are shown in Figure 9. The

overall trend for this flight route and aircraft type shows the average fuel burn error

becoming more negative over time. The KCHS-KSUU, KSUU-PHIK, and KSUU-

UCFM routes show a very similar trend. The only exception is that for these three
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Figure 9. Average fuel burn error in pounds as a function of model forecast hour for
a KC-135 at cruise level 250mb (FL340) and flight route KTCM-RJTY. The time-
frame of the data is 19 Sep – 17 Nov 2013. This case shows a negative bias which
indicates the deterministic and all three ensembles are under-forecasting the head-
wind.

routes there is typically at least one prediction system during then early forecast

hours (f12 to f36) that had a small positive average fuel burn error.

All three ensembles and the deterministic model again appear to show a bias

for this flight route and aircraft type. The range of average fuel burn error dou-

bled from what was shown for the ETAR-KDOV route (Figure 8). This is expected

as the fuel burn rate of the KC-135 is twice that of the C-130. When comparing

the KC-135 KTCM-RJTY case to all the other flight routes and levels (FL240 and

FL300) for the same aircraft, the range of average fuel burn error is consistently the

second highest. This is likely due to the lack of surface observations available along

the route, which impacts how much variability exists in the deterministic model
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and ensemble mean upper-level wind forecasts. These fuel error bias values trans-

late to wind bias values at f36 of 0.98 ms−1 , 0.57 ms−1 , 0.39 ms−1 and 0.39 ms−1

for the GFS, GEFS, GEPS, and MEPS respectively, while bias at f120 increased to

2 ms−1 , 3.9 ms−1 , 2.9 ms−1 , and 1.9 ms−1 respectively. These wind forecast bias

values at f36 were again small relative to wind observing accuracy, while at f120

the bias values for GEFS and GEPS were slightly larger than the accuracy of wind

observations.

4.1.2 Fuel Burn Root Mean Square Error (RMSE).

A more significant fuel burn error metric is the RMSE, which quantifies the ac-

curacy of a model. While 65 different aircraft/route combinations were tested, a to-

tal of 17 figures are presented here to represent the results. One consideration used

when selecting the aircraft and flight route combinations was the feasibility of a

non-stop flight for the aircraft. Using this criterion, the KTCM-RJTY and KSUU-

UCFM routes for the C-130 were eliminated. For the remaining four aircraft, all

five routes of flight were analyzed and the best and worst case, in terms of RMSE

reduction by the ensembles, were selected to represent all cases tested. In addition

to the figures, a table is used to summarize the 36-hr RMSE for the GFS determin-

istic, GEFS, GEPS, and MEPS for all five routes of flight and all five aircraft at

their respective cruise levels. Additional tables with the RMSE values for forecast

hours 12, 24, 60, 84, and 120 can be found in Appendix A. In Figures 10 through

26, the forecast hour is depicted on the x-axis, while the RMSE, in pounds of fuel,

is depicted on the y-axis. The GFS deterministic model and the GEFS, GEPS, and

MEPS are represented using the same shapes and colors that were used in Figures

8 and 9. This analysis will address the first objective of this study.
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 10. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-130 at cruise level 500mb (FL180) and flight route ETAR-
KDOV. The timeframe of the data is 19 Sep – 17 Nov 2013.

4.1.2.1 ETAR-KDOV.

Figure 10 depicts the root mean square error of the fuel burn calculations for

a C-130 flying from Ramstein to Dover. The overall trend of the GFS determinis-

tic, GEFS, GEPS, and MEPS, shows that RMSE increases with the forecast hour

which is to be expected since forecast accuracy decreases as forecast time increases.

The GEFS and GEPS are more accurate than the GFS deterministic for all fore-

cast hours, while the MEPS is only more accurate during forecast hours 12 to 36.

The percentage values discussed throughout this section were calculated by sub-

tracting the ensemble RMSE from the GFS deterministic RMSE and dividing the

difference by the GFS deterministic RMSE. At f12 the GEPS shows the largest im-
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provement over the GFS deterministic model at 36%. The MEPS and GEFS show

11% and 3% improvement respectively. At f24 both the GEPS and MEPS improve-

ments decrease to 31% and 9% respectively, while the GEFS improvement increases

to 4%. This trend continues to f36 where the improvement of GEFS has increased

to 11%, while the GEPS and MEPS improvement over the GFS deterministic has

decreased to 25% and 1% respectively. By f120, two of the three ensembles (GEFS

and GEPS) remain more accurate than the GFS deterministic.

The C-130 had the lowest actual RMSE values when compared to the C-17, C-

5, KC-10, and KC-135. The first reason the RMSE values are lower is due to the

lower fuel burn rate for the C-130. The second reason is likely based on the C-130’s

cruise altitude and the location of the polar front jet stream. Unlike the C-17, C-

5, KC-10, and KC-135, the C-130 generally flies below the core of the jet stream,

therefore it is likely that the errors in the GFS deterministic model, as well as the

three ensembles, will be lower, which will yield lower overall RMSEs. The RMSE

ranges from 190 to 2124 pounds for the C-130 compared to a range spanning 442 to

6654 pounds for the other four aircraft. The various ranges can be attributed to the

different fuel burn rates for each aircraft.

The C-5 flight represents the best case scenario, in terms of ensemble RMSE

reduction, as can be seen in Figure 11. Results for this case are similar to the C-

130 flight shown in Figure 10. The GEFS and GEPS again remain more accurate

than the GFS deterministic for all forecast hours, while the MEPS is more accu-

rate for forecast hours 12 to 36. For this case, the GEPS and MEPS had the largest

percentage of improvement over the GFS deterministic for forecast hours 12 to 36.

Improvements ranged from 22% to 36% The GEFS was also more accurate than the

GFS deterministic during the same three forecast hours, however, the percentages

were much lower (ranging from 9% to 18%). Similar to the previous case, RMSE
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 11. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 250mb (FL340) and flight route ETAR-KDOV.
The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the best case for
this flight route. Best case means the ensembles showed the most improvement over
the deterministic model.

increases with time. Both the GEFS and GEPS remain more accurate than the

GFS deterministic at f120, but the percentage of improvement has decreased signif-

icantly compared to forecast hours 24 and 36, with the GEFS improvement reduced

to 9% and the GEPS reduced to 13%. At f120, the MEPS is 9% less accurate than

the GFS deterministic model.

The worst case for the ETAR-KDOV route was for the KC-10. Results are

shown in Figure 12. Although this case had the smallest difference between the de-

terministic RMSE and the three ensemble RMSEs, the percentage of improvement

shown by the ensembles is very close to the percentages in the best case (Figure 11)

because the GFS deterministic RMSE values are the lower. The GEFS improve-
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 12. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-10 at cruise level 250mb (FL340) and flight route ETAR-
KDOV. The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the
worst case for this flight route. Worst case means the ensembles showed the least
improvement over the deterministic model.

ment ranged from 10% to 17%, the GEPS 23% to 27%, and the MEPS 22% to 38%

for forecast hours 12 to 36. The percentage of improvement at f120 remains low for

all three ensembles. The GEFS and GEPS are 7% and 6% more accurate respec-

tively while the MEPS is both 9% less accurate than the GFS deterministic model.

4.1.2.2 KCHS-KSUU.

For the Charleston to Travis flight scenario three aircraft were used, the C-130,

C-5, and KC-135. As with the ETAR-KDOV route (Figures 10-12) the RMSE in-

creases as the forecast hour increases. The main feature that emerges for this flight

route is that for at least two consecutive forecast hours the GFS out-performs all
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 13. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-130 at cruise level 500mb (FL180) and flight route KCHS-
KSUU. The timeframe of the data is 19 Sep – 17 Nov 2013.

three ensembles. These instances all occur after forecast hour 84. Of additional

note, the RMSE values for the KCHS-KSUU flight, as a percentage of the improve-

ment over the GFS deterministic model, are lower than the ETAR-KDOV RMSE

values. One explanation for this is that the ETAR-KDOV flight path encounters

the core of the polar front jet stream, which affords more opportunity for the wind

forecasts to be less accurate compared to the lower latitude KCHS-KSUU flight

path. Additionally, there are very few surface observations in the Atlantic Ocean,

which contributes to a less accurate depiction of the actual state of the atmosphere

over that region. A less accurate analysis, might result in even more uncertainty in

the upper-level winds throughout time as the error grows.

Figure 13 shows the results for the C-130 flight. At f12 the only the GEPS is
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more accurate than the GFS deterministic model, reducing the RMSE by 3%. By

f24 all three ensembles are more accurate than the deterministic model, but the

percentages of improvement for the GEFS and MEPS remain very low at 1% and

2% respectively. The GEPS improvement over the GFS deterministic has decreased

to 20%. Both the GEFS and GEPS remain more accurate than the deterministic

model at f36, while the MEPS becomes 1% less accurate. The MEPS remains less

accurate than the GFS through f108, but at f120 becomes more accurate than the

GFS deterministic model by 12%. Between f36 and f84 the GEFS and GEPS gener-

ally remain more accurate than the deterministic model. There is one forecast hour

(f96) at which the deterministic model out-performs all three ensembles; by 7% over

GEFS and GEPS and 15% over MEPS.

Results for the best case scenario for the KCHS-KSUU route are shown in Fig-

ure 14. All three ensembles out-perform the GFS deterministic for forecast hours 12

to 36 and the percentages of improvement range from 2% to 27%. At f48 the GEPS

shows only a 1% improvement, the GEFS matches the deterministic model, and the

MEPS is less accurate than the GFS by 5%. The GEPS remains 2% to 15% less ac-

curate than the GFS deterministic for forecast hours 60 to 120. During this same

time period the MEPS was 7% to 18% less accurate than the deterministic model.

For six of the twelve forecast hours between f60 and f120 the deterministic model

out-performs all three ensembles.

The worst case for this route, the KC-135, is shown in Figure 15. Similar to

the C-5 (Figure 14) results, all three ensembles out-perform the GFS determinis-

tic model during forecast hours 12 to 36. The percentages of improvement for each

ensemble are very consistent with the C-5 results as well. At forecast hours 72, 96,

and 108 the deterministic model out-performs all three ensembles. The MEPS is

the only ensemble that remains more accurate than the deterministic at f120.
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 14. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 250mb (FL340) and flight route KCHS-KSUU.
The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the best case for
this flight route. Best case means the ensembles showed the most improvement over
the deterministic model.

4.1.2.3 KSUU-PHIK.

The Travis to Hickam route is the final route for which the C-130 RMSE is ana-

lyzed. Results are consistent with those shown for the KCHS-KSUU route (Figures

13–15), with at least one of the three ensembles being out-performed by the GFS

deterministic model. Additionally, for all three aircraft, the MEPS performance

after f36 is significantly better compared to the ETAR-KDOV and KCHS-KSUU

routes. The meteorological features encountered along this route include the tran-

sition from mid-latitude westerlies (headwind) to the tropical easterlies (tailwind).

Additionally, the jet aircraft will encounter the subtropical jet stream. Since the
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 15. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-135 at cruise level 250mb (FL340) and flight route KCHS-
KSUU. The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the
worst case for this flight route. Worst case means the ensembles showed the least
improvement over the deterministic model.

sub-tropical jet is typically weaker than the polar front jet we expect the uncer-

tainty in the wind forecasts to also be lower, producing a lower fuel burn RMSE.

Figure 16 shows that the GEFS and GEPS were more accurate than the GFS

deterministic model on only four of the ten 12-hourly forecast times for the C-130.

During the most frequently used forecast hours, 12 to 36, the MEPS never out-

performed the GFS deterministic model, while the GEPS was more accurate only

at f12 (26%) and f24 (11%), and the GEFS was only more accurate (2%) at f24.

This route was the first time in which the deterministic model out-performed all

three ensembles during one of the first three 12-hourly forecast times (f36). For f48

to f108, the GEPS did not improve or was less accurate than the GFS deterministic
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model. The GEFS was slightly better at two of the forecast hours, f72 and f96, and

for one forecast hour, f60, it yielded no improvement over the deterministic model.

Interestingly, for the second half of the forecast period (f60 to f120) the MEPS re-

mains more accurate than the GFS deterministic model and both the GEFS and

GEPS. This is the opposite of what was shown in the ETAR-KDOV (Figure 10)

and KCHS-KSUU (Figure 13) results, in which the MEPS was the least accurate

during the later forecast hours.

Figure 17 depicts the results for the KSUU-PHIK best case scenario, the C-5.

The overall performance of the three ensembles improved during forecast hours 12

to 36. Both the GEPS and MEPS were more accurate than the GFS determinis-

tic model during this time with improvements ranging from 2% to 30%. The GEFS
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 16. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-130 at cruise level 500mb (FL180) and flight route KSUU-
PHIK. The timeframe of the data is 19 Sep – 17 Nov 2013.

38



0 6 12 18 24 30 36 42 48 54 60 66 72 78 84 90 96 102 108 114 120
0

500

1000

1500

2000

2500

3000

3500

4000

Forecast Hour

R
oo

t M
ea

n 
Sq

ua
re

 E
rro

r (
po

un
ds

)

KSUU−PHIK C−5 Root Mean Square Error
250mb; 19 Sep−17 Nov 2013

 

 

GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 17. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 250mb (FL340) and flight route KSUU-PHIK.
The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the best case for
this flight route. Best case means the ensembles showed the most improvement over
the deterministic model.

was slightly more accurate at f24 and f36 with improvements of 8% and 2% respec-

tively. The GEFS was 6% less accurate than the deterministic model at f12. This

was the first case in which the MEPS remained more accurate than the determin-

istic model for nine of the ten forecast hours and is more accurate than the GEFS

and GEPS at all forecast hours except f12.

Results for the KC-135 (worst case) are shown in Figure 18. The overall trends

and percentages of improvement for all three ensembles are consistent with the re-

sults shown in Figure 17. The MEPS once again was the best performing ensemble,

with the lowest RMSE for nine of the ten forecast hours. Additionally, the GEPS

out-performed the deterministic model during the early (f12 to f36) and late (f96 to
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 18. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-135 at cruise level 250mb (FL340) and flight route KSUU-
PHIK. The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the worst
case for this flight route. Worst case means the ensembles showed the least improve-
ment over the deterministic model.

f120) forecast hours, but becomes less accurate during f48 to f84.

4.1.2.4 KSUU-UCFM.

This section discusses the best and worst case results for the Travis to Manas

over-the-pole flight. This route is the longest of the five routes tested (5850 nm)

and shows the least amount of improvement by the ensembles over the GFS de-

terministic model. The GFS was more accurate than all three ensembles between

forecast hours 36 to 72 for both cases.

The best case results are shown in Figure 19. At f12 both the GEFS and GEPS

were more accurate than the GFS deterministic, with the GEFS improvement 3%
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 19. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 250mb (FL340) and flight route KSUU-UCFM.
The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the best case for
this flight route. Best case means the ensembles showed the most improvement over
the deterministic model.

and the GEPS 22%. The GEPS was more accurate than the GFS deterministic

model at f12 but by f36 the deterministic model has become more accurate than

all three ensembles. This trend continued until f84, at which point all three ensem-

bles showed a slight improvement over the deterministic model. For the remain-

der of the forecast hours at least one of the ensembles was more accurate than the

GFS deterministic model, with improvements ranging from 2% to 10%. Overall, the

GEPS out-performed the GFS during 50% of the forecast hours, while GEFS out-

performed the GFS during 40% of the forecast hours. The MEPS proved to be the

least accurate of all three ensembles.

The performance of the GFS deterministic model and all three ensembles for
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 20. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-135 at cruise level 250mb (FL340) and flight route KSUU-
UCFM. The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the
worst case for this flight route. Worst case means the ensembles showed the least
improvement over the deterministic model.

the worst case scenario, the KC-135, remained similar to that of the best case sce-

nario. Results are depicted in Figure 20. For forecast hours 12 to 36 the GEPS was

more accurate than the GFS deterministic at f12 and f24. The MEPS remained less

accurate than the deterministic model over the same time period. The GFS was the

most accurate model during the middle third of the forecast period, but by f72 the

MEPS had become more accurate. This occurred 12 hours sooner than during the

KSUU-UCFM best case (Figure 19). During forecast hours 108 and 120 all three

ensembles were more accurate than the GFS deterministic model.

For this route the aircraft crossed the polar front jet stream twice, in addition

to having a majority of the flight traveling over areas of the world with very few
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surface-based observations. This afforded the opportunity for considerable uncer-

tainty in the model’s first guess analysis. This, coupled with the fact that this route

was the longest of the five routes tested may explain why the RMSE values are

among the highest of all aircraft and route combinations tested.

4.1.2.5 KTCM-RJTY.

Results for the second longest flight tested, Travis to Yokota, are discussed in

this section. The ensembles’ percent improvement over the deterministic model

were the most consistent throughout all forecast hours compared to previous routes

and aircraft combinations. All three ensembles out-performed the GFS determin-

istic model for the majority of the forecast hours. The meteorological features en-

countered during this flight are similar to those for the ETAR-KDOV route. The

aircraft encountered the polar front jet stream at least once along the path. Addi-

tionally, there are few surface observations located in the Pacific Ocean. Both of

these factors will add to the initial condition errors for the deterministic model, as

well as the ensembles.

The route’s best case, the C-5, is depicted in Figure 21. During forecast hours

12 to 36, the GEFS and GEPS were more accurate than the GFS deterministic

model with RMSE improvements ranging from 7% to 30%. During this same time

period, the MEPS remained more accurate with the exception of f36, where it equaled

the GFS deterministic model. The GEPS was the best performing ensemble, as it

remained more accurate than the GFS deterministic model for all forecast hours.

The GEFS was less accurate than the GFS deterministic model for only one out

of ten forecast hours, f96, where it was only 1% less accurate. The GEFS had the

lowest percentages of improvement, ranging from 1% to 11%. The MEPS had the

highest range of improvements, ranging from 3% to 25%.
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 21. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 250mb (FL340) and flight route KTCM-RJTY.
The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the best case for
this flight route. Best case means the ensembles showed the most improvement over
the deterministic model.

Results for the worst case, the KC-135, are shown in Figure 22. The percent

of improvement of the ensembles over the GFS deterministic model were similar to

that of the best case (Figure 21) for all forecast hours. The GEPS was again the

best performing ensemble overall, remaining more accurate than the GFS determin-

istic model for all forecast hours with improvements ranging from 8% to 31%. The

GEFS and MEPS both out-performed the GFS deterministic for all forecast hours

except f96 for GEFS and f36 for MEPS.
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GFS Deterministic; n = 239
GEFS Ensemble Mean; n = 239
GEPS Ensemble Mean; n = 119
MEPS Ensemble Mean; n = 119

Figure 22. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-135 at cruise level 250mb (FL340) and flight route KTCM-
RJTY. The timeframe of the data is 19 Sep – 17 Nov 2013. This represents the
worst case for this flight route. Worst case means the ensembles showed the least
improvement over the deterministic model.

4.1.2.6 FL300 (300mb).

At FL300 (300mb) there is only one ensemble, MEPS, available for compar-

ison with the GFS deterministic model due to the non-availability of the 300mb

level in the GEFS and GEPS output. For all four aircraft types on the McChord

to Yokota and Travis to Hickam routes, the MEPS out-performed the GFS deter-

ministic model for at least eight of the ten forecast hours. Figure 23 depicts the

results for the KTCM-RJTY KC-10. The only forecast hour at which the GFS de-

terministic model is more accurate than the MEPS is f36. This is true also for the

C-17 and C-5, while for the KC-135 the GFS was more accurate than the MEPS at
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GFS Deterministic; n = 239
MEPS Ensemble Mean; n = 119

Figure 23. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a KC-10 at cruise level 300mb (FL300) and flight route KTCM-
RJTY. The timeframe of the data is 19 Sep – 17 Nov 2013.

three forecast hours, f36 to f60. For the KSUU-PHIK route, all four aircraft only

have one forecast hour, f84, at which the GFS out-performed the MEPS. For the

remaining three flight routes, ETAR-KDOV, KCHS-KSUU, and KSUU-UCFM,

the GFS generally was more accurate than the MEPS. Figure 24, which shows the

KSUU-UCFM flight route for a C-5, is representative of the results for these three

routes. For the KSUU-UCFM and KCHS-KSUU routes, the GFS deterministic

model was more accurate than the MEPS for eight of the ten forecast hours. The

MEPS was more accurate at the later forecast hours (f84 to f120). For the ETAR-

KDOV route, the MEPS was more accurate than the GFS deterministic model only

during the early forecast hours (f12 to f36).
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Figure 24. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-5 at cruise level 300mb (FL300) and flight route KSUU-UCFM.
The timeframe of the data is 19 Sep – 17 Nov 2013.

4.1.2.7 FL240 (400mb).

Figure 25 depicts results for the KTCM-RJTY flight route for a C-17 at FL240

(400mb). This is the only route for which the MEPS was more accurate than the

GFS deterministic model at all forecast hours and for all aircraft. Results for the

ETAR-KDOV and KSUU-PHIK routes (not shown) were ambiguous. For the ETAR-

KDOV route, the MEPS was more accurate than the GFS deterministic model dur-

ing the early forecast hours (f12 to f36) but the GFS deterministic model became

more accurate for the remainder of the forecast hours. KSUU-PHIK results were

opposite, with the GFS deterministic model more accurate from f12 to f48 and the

MEPS more accurate from f60 to f120. Figure 26 represents the results for the
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Figure 25. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-17 at cruise level 400mb (FL240) and flight route KTCM-
RJTY. The timeframe of the data is 19 Sep – 17 Nov 2013.

KCHS-KSUU route. The KSUU-UCFM results were similar. On these two routes

the GFS deterministic model out-performed the MEPS for nine of the ten forecast

hours.

4.1.2.8 36-hr Forecast RMSE Comparison.

Table 3 contains the 36-hr forecast RMS fuel burn error values for the three en-

sembles and the GFS deterministic model. For each aircraft, cruise level, and route

of flight the four numerical values represent the RMSE for each respective predic-

tion system. The bold face values denote the prediction system with the highest ac-

curacy (lowest RMSE) for that specific route, aircraft, and cruise level. The dashes

denote unavailable data. Since the 300mb and 400mb pressure levels were not avail-
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Figure 26. Root-mean square of fuel burn error in pounds as a function of model
forecast hour for a C-17 at cruise level 400mb (FL240) and flight route KCHS-
KSUU. The timeframe of the data is 19 Sep – 17 Nov 2013.

able from the GEFS and GEPS, the C-17, C-5, KC-10, and KC-135 do not have

results for those two ensembles for routes flown at those cruise altitudes. Also, to

remain consistent with the previous results, C-130 RMSE values were omitted for

the KSUU-UCFM and KTCM-RJTY flight routes. Forecast hour 36 was chosen be-

cause it is the latest forecast hour typically used for flight planning. AMC typically

produces ACFP flight plans/fuel computations between 6 and 12 hours prior to de-

parture. Flight time for the AMC missions used in this study ranged from approx-

imately 4 to 18 hours. The GFS and GEFS are available once every 6 hours, while

the GEPS and MEPS are available once every 12 hours. Adding the flight plan lead

time, flight duration, and model age produces a range of forecast hours between 16

and 42. With the GEPS and MEPS availability limited to every 12 hours the best
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choice for comparison was the 36-hr forecast time, since it is close to f42 and in-

cludes the performance of the GFS deterministic model and all three ensembles. Al-

though AMC typically only uses forecast hours 12 to 42 for flight plans it is impor-

tant to analyze performance out to forecast hour 120 in order to quantify ensemble

performance compared to the deterministic model for the occasions when a longer

duration forecast is required. Appendix A contains similar RMSE data tables for

forecast hours 12, 24, 60, 84, and 120.

Table 3. 36-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 287 226 — — 523

GEFS 279 240 — — 465

GEPS 242 230 — — 394

MEPS 289 228 — — 516

C-17 250mb GFS 818 720 1286 1528 1474

GEFS 761 709 1414 1432 1202

GEPS 688 702 1387 1263 1121

MEPS 764 681 1419 1524 1144

C-17 300mb GFS 725 642 1355 1361 1184

GEFS — — — — —

GEPS — — — — —

MEPS 730 625 1468 1461 1079

C-17 400mb GFS 529 481 1052 1175 962

GEFS — — — — —

GEPS — — — — —

MEPS 546 505 1181 1030 878

C-5 250mb GFS 1094 968 1724 2042 1961

GEFS 1018 952 1892 1909 1608

GEPS 920 943 1853 1693 1506

MEPS 1021 915 1902 2033 1530
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Table 3 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-5 300mb GFS 973 862 1815 1822 1578

GEFS — — — — —

GEPS — — — — —

MEPS 980 839 1971 1955 1442

C-5 400mb GFS 712 643 1412 1572 1285

GEFS — — — — —

GEPS — — — — —

MEPS 734 678 1586 1379 1174

KC-10 250mb GFS 710 633 1123 1320 1264

GEFS 663 624 1229 1235 1043

GEPS 598 618 1203 1093 979

MEPS 665 599 1244 1313 988

KC-10 300mb GFS 633 567 1187 1182 1025

GEFS — — — — —

GEPS — — — — —

MEPS 640 551 1291 1263 936

KC-10 400mb GFS 466 424 930 1023 837

GEFS — — — — —

GEPS — — — — —

MEPS 482 446 1044 897 764

KC-135 250mb GFS 669 565 1034 1268 1236

GEFS 616 555 1147 1186 975

GEPS 555 552 1123 1040 906

MEPS 615 529 1113 1269 942

KC-135 300mb GFS 575 499 1073 1115 971

GEFS — — — — —

GEPS — — — — —

MEPS 578 483 1145 1206 884
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Table 3 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

KC-135 400mb GFS 415 370 815 935 775

GEFS — — — — —

GEPS — — — — —

MEPS 425 386 911 828 704

Table 3 indicates that, at f36, the ensembles out-performed the deterministic

model in 87% of the cases. For the C-130 at 500mb (FL180) and the C-17, C-5,

KC-10, and KC-135 at 250mb (FL340), the GEPS consistently performed best.

The GEPS has nearly three times as many ensemble members as the GEFS and

more than six times as many as the MEPS. The GEPS is a multi-model ensem-

ble while the GEFS and MEPS are both single-model ensembles. Stensrud et al.

(1999) found that for short-range forecasting the inclusion of two different mod-

els in an ensemble increases the ensemble spread, which may improve confidence in

the accuracy of the ensemble mean. Additionally, Mylne et al. (2002) found that

medium-range ensemble forecast skill improved when using a multi-model ensem-

ble. An exception occurs for the KSUU-PHIK route, where the MEPS consistently

had a lower RMSE at f36 (Table 3) and also for forecast hours 12, 24, 60, 84, and

96 as well (Appendix A). Thus it appears the MEPS may perform best in the trop-

ics. The fuel burn RMSE improvements by all three EPSs for all aircraft types and

routes of flight during forecast hours 12, 24, and 36 averages 10.25%. Thus, this

preliminary study indicates that by using an ensemble mean wind forecast, AMC

could potentially reduce flight plan fuel forecast errors.

52



4.2 Correlation of Fuel Burn Forecast Error with Forecast Additive

Wind Spread

In order to test whether the ensemble additive wind spread might predict fuel

burn forecast error, the same 65 aircraft/flight route combinations were analyzed.

Table 4 shows the 36-hr correlation coefficients between absolute value of forecast

fuel burn error and additive wind spread for all three ensembles. As Table 4 shows,

there is no clear correlation. Figures 27 and 28 depict the strongest and weakest

correlated cases. The x-axis depicts the ensemble additive wind spread in ms−1 and

the y-axis depicts the absolute value of the forecast fuel burn error in pounds of

fuel. The red line represents the best fit. The maximum correlation coefficient ob-

served was 0.56 at f12 for the KSUU-PHIK KC-135 MEPS at 400mb (Figure 27).

The lowest correlation coefficient (0.00) for all cases occurred at f66 for the ETAR-

KDOV C-17 GEFS at 250mb (Figure 28).

The method used to calculate the additive wind spread in this study sums the

combined wind spread values from grid point to grid point along the route of flight.

This may not be the most optimal way to quantify wind forecast variability. The

true spread one would want to measure is the spread in the flight times for each

ensemble forecast (Kuchera 2014). The spread is often highly correlated from grid

point to grid point. In such a case, the spread may be indicating uncertainty in the

position of a meteorological feature rather than random wind variability. An exam-

ple would be a situation in which every member of an ensemble forecasts a similar

intensity for the speed maximum along a jet stream. Each member forecasts a sim-

ilar intensity for the speed max, but a slightly different position. A flight through

the area has a 100% chance of encountering the speed maximum and would feel

the fuel burn impacts identically for each ensemble member. However, the additive

wind spread would be large due to the jet streak position differences among ensem-
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ble members. The large additive wind spread would indicate a large expected fuel

burn error, while in reality the ensemble mean fuel forecast ends up being accurate.

This may explain why this study did not find a strong correlation between the fuel

burn error and the ensemble additive wind spread.

Table 4. Correlation between 36-hr fuel burn error absolute value and additive wind
spread for each aircraft and route combination. Dashes denote non-availability of
model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UAFM KTCM-RJTY ETAR-KDOV

C-130 GEFS 0.02 0.26 — — 0.25

GEPS -0.03 0.16 — — -0.17

MEPS 0.08 0.39 — — 0.23

C-17 250mb GEFS 0.14 0.15 -0.01 -0.13 -0.04

GEPS 0.17 0.05 -0.01 -0.04 -0.17

MEPS 0.07 0.13 -0.07 -0.14 -0.05

C-17 300mb GEFS — — — — —

GEPS — — — — —

MEPS 0.04 0.21 -0.05 -0.05 0.15

C-17 400mb GEFS — — — — —

GEPS — — — — —

MEPS -0.01 0.20 -0.02 0.10 0.33

C-5 250mb GEFS 0.14 0.15 -0.02 -0.13 -0.04

GEPS 0.17 0.04 -0.01 -0.04 -0.17

MEPS 0.07 0.12 -0.07 -0.14 -0.05

C-5 300mb GEFS — — — — —

GEPS — — — — —

MEPS 0.03 0.21 -0.05 -0.05 0.15

C-5 400mb GEFS — — — — —

GEPS — — — — —

MEPS -0.01 0.19 -0.02 0.11 0.35

54



Table 4 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UAFM KTCM-RJTY ETAR-KDOV

KC-10 250mb GEFS 0.14 0.14 -0.01 -0.13 -0.05

GEPS 0.17 0.04 -0.01 -0.04 -0.19

MEPS 0.07 0.11 -0.07 -0.14 -0.06

KC-10 300mb GEFS — — — — —

GEPS — — — — —

MEPS 0.04 0.20 -0.05 -0.05 0.14

KC-10 400mb GEFS — — — — —

GEPS — — — — —

MEPS -0.01 0.19 -0.02 0.10 0.34

KC-135 250mb GEFS 0.15 0.18 -0.02 -0.13 -0.01

GEPS 0.17 0.09 -0.02 -0.06 -0.12

MEPS 0.07 0.15 -0.08 -0.14 -0.03

KC-135 300mb GEFS — — — — —

GEPS — — — — —

MEPS 0.03 0.24 -0.06 -0.06 0.18

KC-135 400mb GEFS — — — — —

GEPS — — — — —

MEPS -0.02 0.21 -0.02 0.11 0.36

55



200 400 600 800 1000 1200 1400 1600
0

100

200

300

400

500

600

Ensemble Spread (ms−1)

Ab
so

lu
te

 V
al

ue
 o

f F
ue

l B
ur

n 
Er

ro
r (

po
un

ds
)

Figure 27. Absolute value of the fuel burn error in pounds versus the MEPS addi-
tive wind spread (ms−1) at forecast hour 12 for a KC-135 at a cruise level of 400mb
(FL240) and flight route KSUU-PHIK. The timeframe of the data is 19 Sep – 17 Nov
2013. This case had a correlation coefficient of .56 which is the best of all the cases
tested.
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ETAR−KDOV C−17 Fuel Burn Error vs. GEFS Spread
250mb; 19 Sep−17 Nov 2013; f66; n = 239

Figure 28. Absolute value of the fuel burn error in pounds versus the GEFS additive
wind spread (ms−1) at forecast hour 66 for a C-17 at cruise level 250mb (FL340) and
flight route ETAR-KDOV. The timeframe of the data is 19 Sep – 17 Nov 2013. This
case had a correlation coefficient of 0.00.
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5. Conclusions

5.1 Summary

Over the past 60 years, major improvements and advances in NWP have made

it the primary tool utilized by meteorologists today. Due to the chaotic nature of

the atmosphere, weather models contain significant uncertainty as a result of anal-

ysis and model errors. Ensemble prediction systems enable meteorologists to quan-

tify uncertainty in a forecast, so over the past decade meteorologists have gradually

integrated EPSs into their forecasting and decision making processes. Numerous

studies (Katz and Murphy 1997; Richardson 2000; Palmer 2002; Zhu et al. 2002)

have shown the value of using probabilistic forecasts over deterministic or climato-

logical information, especially for cost-loss decisions; AMC’s airlift flight planning

process, however, continues to use the GFS deterministic model as its primary fore-

cast data source.

The two objectives of this research were to: (1) determine if an ensemble mean

wind forecast is more accurate than a deterministic wind forecast for strategic air-

lift fuel planning, and (2) determine if a correlation exists between the ensemble

additive wind spread and the error in calculated fuel burns. Currently the Auto-

mated Computer Flight Planning (ACFP) system used by AMC ingests GFS deter-

ministic model weather data every 6 hours. These data (temperature, geopotential

height, and the u and v-components of the wind), are then used to find the most

optimum flight route. The objectives of this study were explored using an algo-

rithm which calculated the amount of time and fuel required to fly a great circle

route. As the aircraft traversed the route, its groundspeed, heading, and position

were updated every minute using the u and v wind components from the nearest

model grid point. Additionally, the combined ensemble wind spread was calculated
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using the nearest grid point at each 1-minute time step and summed up along the

route to give the additive wind spread.

The results indicate that ensemble mean wind forecasts generally provide more

accurate fuel burn estimates than GFS deterministic model wind forecasts, produc-

ing an average improvement of 10.25% during forecast hours 12, 24, and 36. The

increased accuracy of the wind forecasts may enable a reduction in the amount of

reserve fuel AMC missions carry to accommodate for wind variability. With less

reserve fuel required, the takeoff weight of the aircraft decreases, thus decreasing

the amount of fuel burned throughout the flight. For the 23 different aircraft and

flight route combinations tested at cruise levels 500mb (FL180) and 250mb (FL340)

at least one of the three ensembles were more accurate than the GFS determinis-

tic model in 96% of the cases during forecast hours 12 to 36. If the timeframe is

extended to all forecast hours, the ensembles were more accurate than the GFS de-

terministic model in 89% of the cases. Among the individual ensembles, the GEPS

consistently had the lowest RMSE (most accurate). At forecast hour 12, the GEPS

was the most accurate model for all C-130 routes and four out of five of the C-17,

C-5, KC-10, and KC-135 routes. During f24 and f36 the GEPS was always the most

accurate ensemble for the C-130 routes and was the most accurate for at least three

of the five routes for the remaining four aircraft. Since the GEPS (run twice daily)

out-performs the GEFS (run four times daily) it can also be concluded from the

limited cases in this study that a multi-model ensemble run at 12-hour intervals

provides more accurate upper-level wind forecasts than a single-model ensemble run

at 6-hour intervals. However, a study using a larger data set (spanning a full year)

would provide more conclusive results. For the 40 different aircraft and flight route

combinations tested at cruise levels 400mb (FL240) and 300mb (FL300), the GFS

deterministic model generally out-performed the MEPS for at least three of the five

58



flight routes.

In regard to the second objective of this study, the results for the 65 different

aircraft and flight route combinations tested showed that no correlation exists be-

tween the ensemble additive wind spread and the absolute value of the forecast fuel

burn error. The highest correlation between the ensemble additive wind spread and

the absolute value of the forecast fuel burn error found during this study was 0.56.

The method used to calculate the total spread for each flight route may have con-

tributed to the lack of correlation between the absolute value of the forecast fuel

burn error and the ensemble additive wind spread.

5.2 Future Work

It is important to note that several simplifications were made during this study.

To quantify potential cost savings, several improvements must be incorporated into

this preliminary study: (1) expand the data set to span a full year; (2) incorporate

400mb (FL240) and 300mb (FL300) levels into standard GEPS output to enable

comparison of all three EPSs for all flight levels of interest; (3) include temperature

data along the flight route in order to more accurately calculate the true airspeed

of the aircraft; (4) account for the variability of the weight of the aircraft through-

out the flight; (5) incorporate the fuel burned during ascent and descent; and (6)

develop a more robust method to calculate the ensemble forecast spread for each

flight. Expanding the data set to at least a full year will not only yield a more sta-

tistically significant sample, but it will also afford the opportunity to investigate

seasonal variability in deterministic model and ensemble performance.

Attempting to calculate a definitive cost savings based solely on the fuel burn

RMSE reduction is very complex, especially since there are several other factors

that affect the amount of fuel burned during a flight. However, the improvement in
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the fuel burn forecast accuracy over the 60-day period of this study justifies further

investigation of the value of implementing ensemble mean wind forecasts into the

AMC flight planning process.

60



Appendix A. RMS Fuel Burn Error for Forecast Hours 12,
24, 60, 84, and 120

Table 5. 12-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 153 140 — — 297

GEFS 155 142 — — 287

GEPS 103 103 — — 190

MEPS 177 162 — — 264

C-17 250mb GFS 457 453 610 873 746

GEFS 429 479 594 775 672

GEPS 334 392 478 602 546

MEPS 446 423 720 656 540

C-17 300mb GFS 370 410 661 857 676

GEFS — — — — —

GEPS — — — — —

MEPS 408 397 707 623 452

C-17 400mb GFS 365 264 478 677 545

GEFS — — — — —

GEPS — — — — —

MEPS 310 281 531 427 422

C-5 250mb GFS 613 605 818 1163 997

GEFS 571 641 795 1036 904

GEPS 446 525 642 810 733

MEPS 598 568 963 875 721

C-5 300mb GFS 497 551 888 1146 908

GEFS — — — — —

GEPS — — — — —

MEPS 547 533 948 834 604
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Table 5 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-5 400mb GFS 354 352 641 901 732

GEFS — — — — —

GEPS — — — — —

MEPS 415 377 708 572 567

KC-10 250mb GFS 398 397 533 752 645

GEFS 371 422 519 674 584

GEPS 291 345 421 524 478

MEPS 388 371 626 565 467

KC-10 300mb GFS 322 360 579 745 589

GEFS — — — — —

GEPS — — — — —

MEPS 358 349 617 540 392

KC-10 400mb GFS 233 233 423 589 476

GEFS — — — — —

GEPS — — — — —

MEPS 272 247 468 372 367

KC-135 250mb GFS 369 352 491 719 614

GEFS 345 375 479 636 549

GEPS 268 306 386 497 446

MEPS 358 331 585 542 442

KC-135 300mb GFS 294 320 524 702 556

GEFS — — — — —

GEPS — — — — —

MEPS 325 310 564 504 368

KC-135 400mb GFS 207 204 368 539 443

GEFS — — — — —

GEPS — — — — —

MEPS 243 216 407 343 336
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Table 6. 24-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 210 184 — — 419

GEFS 207 181 — — 401

GEPS 167 163 — — 291

MEPS 204 207 — — 380

C-17 250mb GFS 639 591 929 1191 1199

GEFS 600 548 949 1098 1024

GEPS 498 543 803 922 866

MEPS 598 461 1139 1068 765

C-17 300mb GFS 549 513 979 1227 960

GEFS — — — — —

GEPS — — — — —

MEPS 548 448 1156 1037 762

C-17 400mb GFS 386 381 799 965 796

GEFS — — — — —

GEPS — — — — —

MEPS 407 406 881 802 677

C-5 250mb GFS 854 792 1249 1587 1602

GEFS 801 731 1270 1471 1370

GEPS 664 729 1077 1237 1158

MEPS 801 620 1527 1425 1021

C-5 300mb GFS 738 686 1311 1642 1282

GEFS — — — — —

GEPS — — — — —

MEPS 735 602 1552 1385 1022
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Table 6 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-5 400mb GFS 519 510 1071 1290 1061

GEFS — — — — —

GEPS — — — — —

MEPS 544 543 1184 1074 907

KC-10 250mb GFS 555 517 809 1029 1031

GEFS 521 480 828 953 889

GEPS 433 475 700 795 751

MEPS 521 406 995 918 662

KC-10 300mb GFS 479 451 856 1066 831

GEFS — — — — —

GEPS — — — — —

MEPS 479 394 1014 893 661

KC-10 400mb GFS 339 334 703 839 691

GEFS — — — — —

GEPS — — — — —

MEPS 357 358 780 697 590

KC-135 250mb GFS 515 466 747 981 1007

GEFS 484 430 771 907 835

GEPS 400 427 651 763 699

MEPS 482 358 907 893 633

KC-135 300mb GFS 436 400 770 1008 787

GEFS — — — — —

GEPS — — — — —

MEPS 436 347 905 855 627

KC-135 400mb GFS 302 294 615 773 646

GEFS — — — — —

GEPS — — — — —

MEPS 318 311 677 644 548
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Table 7. 60-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 412 380 — — 833

GEFS 417 380 — — 783

GEPS 406 409 — — 683

MEPS 484 358 — — 913

C-17 250mb GFS 1042 1116 2218 2413 1798

GEFS 1013 1102 2245 2383 1626

GEPS 1070 1171 2358 2086 1732

MEPS 1178 964 2279 2239 2083

C-17 300mb GFS 1017 1066 2297 2243 1890

GEFS — — — — —

GEPS — — — — —

MEPS 1165 950 2431 2225 2131

C17 400mb GFS 836 825 1743 1815 1583

GEFS — — — — —

GEPS — — — — —

MEPS 954 769 1989 1743 1745

C5 250mb GFS 1396 1502 2975 3225 2405

GEFS 1355 1475 3005 3179 2183

GEPS 1431 1572 3157 2788 2326

MEPS 1576 1292 3060 2985 2788

C-5 300mb GFS 1364 1428 3071 2996 2528

GEFS — — — — —

GEPS — — — — —

MEPS 1563 1277 3263 2973 2849

C-5 400mb GFS 1122 1108 2340 2430 2123

GEFS — — — — —

GEPS — — — — —

MEPS 1280 1036 2670 2334 2335
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Table 7 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

KC-10 250mb GFS 907 980 1931 2084 1560

GEFS 882 966 1958 2055 1419

GEPS 932 1032 2058 1799 1513

MEPS 1028 846 2004 1927 1805

KC-10 300mb GFS 890 939 2000 1939 1641

GEFS — — — — —

GEPS — — — — —

MEPS 1022 838 2138 1921 1848

KC-10 400mb GFS 735 731 1535 1585 1380

GEFS — — — — —

GEPS — — — — —

MEPS 838 681 1754 1520 1520

KC-135 250mb GFS 835 868 1783 1995 1474

GEFS 812 861 1800 1977 1322

GEPS 855 914 1890 1723 1395

MEPS 939 754 1784 1863 1703

KC-135 300mb GFS 804 821 1820 1834 1550

GEFS — — — — —

GEPS — — — — —

MEPS 921 734 1900 1836 1741

KC-135 400mb GFS 652 630 1354 1447 1270

GEFS — — — — —

GEPS — — — — —

MEPS 746 588 1537 1401 1398
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Table 8. 84-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 567 522 — — 1207

GEFS 551 529 — — 1081

GEPS 553 550 — — 1078

MEPS 650 524 — — 1300

C-17 250mb GFS 1440 1508 3460 3676 2849

GEFS 1391 1551 3399 3601 2646

GEPS 1529 1641 3418 3181 2470

MEPS 1541 1506 3372 3202 3048

C-17 300mb GFS 1315 1335 3549 3446 3141

GEFS — — — — —

GEPS — — — — —

MEPS 1453 1381 3605 3213 3270

C-17 400mb GFS 1064 1117 2695 2584 2430

GEFS — — — — —

GEPS — — — — —

MEPS 1233 1089 3087 2512 2642

C-5 250mb GFS 1929 2028 4639 4914 3809

GEFS 1863 2080 4551 4807 3543

GEPS 2048 2199 4578 4246 3309

MEPS 2063 2021 4529 4274 4076

C-5 300mb GFS 1764 1795 4751 4606 4202

GEFS — — — — —

GEPS — — — — —

MEPS 1948 1852 4840 4297 4367

C-5 400mb GFS 1428 1502 3621 3458 3255

GEFS — — — — —

GEPS — — — — —

MEPS 1653 1463 4147 3361 3532
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Table 8 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

KC-10 250mb GFS 1253 1330 3013 3181 2474

GEFS 1213 1361 2965 3105 2299

GEPS 1334 1440 2987 2735 2150

MEPS 1344 1322 2967 2767 2640

KC-10 300mb GFS 1152 1175 3102 2983 2720

GEFS — — — — —

GEPS — — — — —

MEPS 1271 1215 3174 2781 2827

KC-10 400mb GFS 935 988 2373 2254 2116

GEFS — — — — —

GEPS — — — — —

MEPS 1083 962 2722 2188 2296

KC-135 250mb GFS 1152 1177 2789 3028 2318

GEFS 1113 1214 2715 2986 2153

GEPS 1221 1282 2722 2659 2000

MEPS 1233 1180 2624 2633 2487

KC-135 300mb GFS 1042 1034 2807 2819 2575

GEFS — — — — —

GEPS — — — — —

MEPS 1153 1075 2805 2631 2689

KC-135 400mb GFS 828 852 2091 2065 1946

GEFS — — — — —

GEPS — — — — —

MEPS 964 837 2383 2008 2129
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Table 9. 120-hr RMS Fuel Burn Error for each aircraft and route combination. The
four rows correspond to the GFS, GEFS, GEPS, and MEPS respectively. The small-
est RMSE for each aircraft/route combination is indicated in bold, while dashes
denote non-availability of model output at that pressure level.

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

C-130 GFS 1006 847 — — 2055

GEFS 928 823 — — 1767

GEPS 886 838 — — 1838

MEPS 882 765 — — 2124

C-17 250mb GFS 2419 2858 4949 4939 4554

GEFS 2426 2596 4867 4781 4220

GEPS 2480 2500 4811 4251 4257

MEPS 2364 2311 4941 4572 4978

C-17 300mb GFS 2243 2412 5028 4722 4923

GEFS — — — — —

GEPS — — — — —

MEPS 2177 2078 5129 4407 5211

C-17 400mb GFS 1835 1772 3930 3791 4107

GEFS — — — — —

GEPS — — — — —

MEPS 1768 1569 4103 3399 4225

C-5 250mb GFS 3242 3840 6637 6599 6092

GEFS 3247 3485 6518 6381 5647

GEPS 3320 3353 6447 5672 5696

MEPS 3167 3100 6634 6112 6554

C-5 300mb GFS 3010 3244 6743 6315 6585

GEFS — — — — —

GEPS — — — — —

MEPS 2920 2787 6931 5896 6960

C-5 400mb GFS 2464 2384 5281 5082 5504

GEFS — — — — —

GEPS — — — — —

MEPS 2373 2109 5508 4544 5648
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Table 9 – continued from previous page

KCHS-KSUU KSUU-PHIK KSUU-UCFM KTCM-RJTY ETAR-KDOV

KC-10 250mb GFS 2113 2517 4340 4269 3958

GEFS 2118 2282 4254 4121 3665

GEPS 2163 2195 4205 3650 3702

MEPS 2066 2028 4339 3967 4312

KC-10 300mb GFS 1967 2128 4414 4091 4268

GEFS — — — — —

GEPS — — — — —

MEPS 1909 1827 4507 3827 4502

KC-10 400mb GFS 1613 1568 3465 3309 3582

GEFS — — — — —

GEPS — — — — —

MEPS 1555 1386 3617 2970 3668

KC-135 250mb GFS 1916 2218 3903 4065 3686

GEFS 1932 2024 3854 3962 3432

GEPS 1979 1957 3835 3559 3457

MEPS 1878 1810 3874 3715 4084

KC-135 300mb GFS 1764 1859 3934 3852 4023

GEFS — — — — —

GEPS — — — — —

MEPS 1716 1617 4010 3572 4293

KC-135 400mb GFS 1431 1354 3034 3027 3297

GEFS — — — — —

GEPS — — — — —

MEPS 1378 1206 3167 2703 3416
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